

14 September 2020

To: Recipients of M100, 30th ed.

From: Jennifer K. Adams, MT(ASCP), MSHA Vice President, Standards and Quality

Subject: Combined Corrections

This notice is intended to inform users of corrections made to CLSI document M100, *Performance Standards for Antimicrobial Susceptibility Testing*, 30th ed. The corrections are described below and shown as highlighted and/or stricken text in the table excerpts.

Correction: 10 September 2020

Appendix E. Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints:

The susceptible minimal inhibitory concentration (MIC) breakpoint for *Pseudomonas aeruginosa* and ceftazidime-avibactam is listed incorrectly as " $\ge 8/4 \ \mu g/mL$." The susceptible MIC breakpoint has been corrected to read " $\le 8/4 \ \mu g/mL$ " for accuracy and is consistent with Table 2B-1.

Appendix E. Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints

	Breakpoints and Interpretive Categories						
	Susceptible						
Antimicrobial Agent	MIC	Dose					
Table 2B-1. Pseudomonas aeruginosa							
Ceftazidime-avibactam	<mark>≞ 8/4 μg/mL</mark> ≤8/4 μg/mL	2.5 g (2 g ceftazidime + 0.5 g avibactam) administered every 8 h over 2 h					

Correction: 28 April 2020

Appendix I. Cefiderocol Broth Preparation and Reading Broth Microdilution Minimal Inhibitory Concentration End Points:

In section 11.2, in the step-action table describing preparation of zinc stock solution, the comment for step 1 is listed incorrectly as, "This solution contains 10 mg Zn⁺⁺/mL." The comment has been corrected to read, "This solution contains 0.65 mg Zn⁺⁺/mL (10 mmol Zn⁺⁺/mL)."

Step	Action	Comment	
1	Dissolve 0.29 g ZnSO ₄ • 7H ₂ O in 100 mL deionized	This solution contains 10 0.65 mg Zn ⁺⁺ /mL (10	
	water.	mmol Zn ⁺⁺ /mL).	
2	Sterilize the solution by membrane filtration.		
3	Store the solution at 15 to 25°C.		

In section 12, in the step-action table showing an example for preparing cation-adjusted Mueller-Hinton broth that contains below-detectable concentrations (< 0.0001 mg/L) of Zn⁺⁺ after chelation:

- Step 2 incorrectly reads, "Add 0.1 mL Zn⁺⁺ stock per L to obtain a concentration of 1 mg/L." Step 2 has been corrected to read, "Add 1.54 mL Zn⁺⁺ stock per L (1.54 mL for each 1 mg/L)."
- The comment for step 2 is listed incorrectly as "1 mg/mL 0.1 mL = 0.1 mL." The comment has been corrected to read, "1 mg/L 1.54 mL (0.65 mg Zn⁺⁺/mL) = 1 mg/L".

Step	Action	Comment
1	Calculate the amount of Zn ⁺⁺ needed using this formula:	For Zn ⁺⁺ , the final amount needed is 0.5-1 mg/L.
	Final amount needed - amount in medium = amount to be added	1 mg/L-0 mg/L=1 mg/L
2	Add <mark>9.4</mark> 1.54 mL Zn** stock per L (1.54 mL for each 1 mg/L). to obtain a concentration of 1 mg/L	1 mg/ <mark>m</mark> L • 0.1 1.54 mL (0.65 mg Zn ⁺⁺ /mL) = 0.1 1 m <mark>g</mark> /L
3	Proceed with steps 8 and 9 above.	

Correction: 6 February 2020

Table 2C. Zone Diameter and MIC Breakpoints for *Staphylococcus* spp.:

In general comment (5), in the Methods for Detection of Methicillin (Oxacillin)-Resistant *Staphylococcus* spp. table, the incubation period for *Staphylococcus* epidermidis with cefoxitin disk diffusion is listed incorrectly as "16-18 h." The incubation period has been corrected to read "24 h."

(5) Most methicillin (oxacillin) resistance is mediated by *mecA*, encoding PBP2a (also called PBP2'). Isolates that test positive for *mecA* or PBP2a should be reported as **methicillin** (oxacillin) resistant (see Appendix H).

Detection of **methicillin** (oxacillin) resistance in staphylococci is achieved by using specific methods as listed in Table 2C and further described in Table 3F.

	Methods for Detection of					
	Methicillin (Oxacillin)-Resistant Staphylococcus spp.					
	Cefoxitin	Cefoxitin disk		Oxacillin disk	Oxacillin	
Organism	MIC	diffusion	Oxacillin MIC	diffusion	salt agar	
S. aureus	Yes	Yes	Yes	No	Yes	
	(16-20	(16-18 h)	(24 h)		(24 h)	
	h)	. ,				
S. lugdunensis	Yes	Yes	Yes	No	No	
	(16-20	(16-18 h)	(24 h)			
	h)	. ,	. ,			
S. epidermidis	No	Yes	Yes	Yes	No	
		(<mark>16_1824 h</mark>)	(24 h)	(16-18 h)		
S. pseudintermedius	No	No	Yes	Yes	No	
			(24 h)	(16-18 h)		
S. schleiferi	No	No	Yes	Yes	No	
			(24 h)	(16-18 h)		
Other Staphylococcus	No	Yesª	Yesª	No	No	
spp. (not listed above)		(24 h)	(24 h)			

Abbreviations: h, hour(s); MIC, minimal inhibitory concentration; MRS, methicillin (oxacillin)-resistant staphylococci; PBP2a, penicillin-binding protein 2a.

^a For isolates of "other *Staphylococcus* spp." from serious infections for which the oxacillin MICs are 0.5-2 µg/mL, testing for *mecA* or PBP2a should be considered (see comment [17]). Cefoxitin disk diffusion is not currently recommended.

Mechanisms of **methicillin** (oxacillin) resistance other than *mecA* are rare and include a novel *mecA* homologue, *mecC*. MICs for strains with *mecC* are typically cefoxitin resistant and oxacillin susceptible; *mecC* resistance cannot be detected by tests directed at *mecA* or PBP2a.

If you require any additional clarification regarding these corrections, please contact CLSI Customer Service (customerservice@clsi.org).

We appreciate your commitment to CLSI and regret any inconvenience.