M100

Performance Standards for Antimicrobial Susceptibility Testing

This document includes updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02, M07, and M11.

A CLSI supplement for global application.
The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advances in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeal Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeal, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Abstract

The data in the tables are valid only if the methodologies in CLSI documents M02, M07, and M11 are followed. These standards contain information about broth disk (M02) and dilution (M07 and M11) test procedures for aerobic and anaerobic bacteria, respectively.

Clinicians depend heavily on information from the microbiology laboratory for treating their seriously ill patients. The clinical importance of antimicrobial susceptibility test results demands that these tests be performed under optimal conditions and that laboratories have the capability to provide results for the newest antimicrobial agents.

The tables presented in M100 represent the most current information for drug selection, interpretation, and quality control using the procedures standardized in M02, M07, and M11. Users should replace previously published tables with these new tables. Changes in the tables since the previous edition appear in boldface type.

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, or to request a copy of the catalog, contact us at: Telephone: +1.610.688.0100; Fax: +1.610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org.
Contents

Abstract ... i

Committee Membership ... iii

Overview of Changes .. xiv

Summary of CLSI Processes for Establishing Breakpoints and Quality Control Rangesxxvii

CLSI Reference Methods vs Commercial Methods and CLSI vs US Food and Drug Administration Breakpoints ... xxviii

CLSI Breakpoint Additions/Revisions Since 2010... xxix

CLSI Epidemiological Cutoff Value Additions/Revisions Since 2015... xxxii

CLSI Archived Resources .. xxxii

Subcommittee on Antimicrobial Susceptibility Testing Mission Statement xxxiii

Instructions for Use of Tables .. 1

Table 1A. Suggested Groupings of Antimicrobial Agents Approved by the US Food and Drug Administration for Clinical Use That Should Be Considered for Testing and Reporting on Nonfastidious Organisms by Microbiology Laboratories in the United States .. 16

Table 1B. Suggested Groupings of Antimicrobial Agents Approved by the US Food and Drug Administration for Clinical Use That Should Be Considered for Testing and Reporting on Fastidious Organisms by Microbiology Laboratories in the United States .. 22

Table 1C. Suggested Groupings of Antimicrobial Agents Approved by the US Food and Drug Administration for Clinical Use That Should Be Considered for Testing and Reporting on Anaerobic Organisms by Microbiology Laboratories in the United States .. 28

Table 2A. Zone Diameter and MIC Breakpoints for Enterobacteriaceae .. 30

Table 2B-1. Zone Diameter and MIC Breakpoints for Pseudomonas aeruginosa 38

Table 2B-2. Zone Diameter and MIC Breakpoints for Acinetobacter spp. 42
Contents (Continued)

Table 2B-3. Zone Diameter and MIC Breakpoints for *Burkholderia cepacia* complex ... 46
Table 2B-4. Zone Diameter and MIC Breakpoints for *Stenotrophomonas maltophilia* ... 48
Table 2B-5. MIC Breakpoints for Other Non-*Enterobacteriaceae* (Refer to General Comment 1) ... 50
Table 2C. Zone Diameter and MIC Breakpoints for *Staphylococcus* spp. .. 54
Table 2D. Zone Diameter and MIC Breakpoints for *Enterococcus* spp. ... 64
Table 2E. Zone Diameter and MIC Breakpoints for *Haemophilus influenzae* and *Haemophilus parainfluenzae* 68
Table 2F. Zone Diameter and MIC Breakpoints for *Neisseria gonorrhoeae* .. 72
Table 2G. Zone Diameter and MIC Breakpoints for *Streptococcus pneumoniae* ... 76
Table 2H-1. Zone Diameter and MIC Breakpoints for *Streptococcus* spp. β-Hemolytic Group ... 82
Table 2H-2. Zone Diameter and MIC Breakpoints for *Streptococcus* spp. Viridans Group ... 86
Table 2I. Zone Diameter and MIC Breakpoints for *Neisseria meningitidis* ... 90
Table 2J. MIC Breakpoints for Anaerobes ... 94
Table 3A. Tests for Extended-Spectrum β-Lactamases in *Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli*, and *Proteus mirabilis* ... 98
Introduction to Tables 3B and 3C. Tests for Carbapenemases in *Enterobacteriaceae* and *Pseudomonas aeruginosa* 102
Table 3B. CarbaNP Test for Suspected Carbapenemase Production in *Enterobacteriaceae* and *Pseudomonas aeruginosa* 104
Table 3B-1. Modifications of Table 3B When Using MIC Breakpoints for Carbapenems Described in M100-S20 (January 2010) ... 108
Table 3C. Modified Carbapenem Inactivation Methods for Suspected Carbapenemase Production in *Enterobacteriaceae* and *P. aeruginosa* 112
Table 3C-1. Modifications of Table 3C When Using MIC Breakpoints for Carbapenems Described in M100-S20 (January 2010) 124
Contents (Continued)

Table 3D. Test for Detection of β-Lactamase Production in *Staphylococcus* spp. ... 126
Table 3E. Test for Detection of Methicillin Resistance (Oxacillin Resistance) in *Staphylococcus* spp., Except *Staphylococcus pseudintermedius* and *Staphylococcus schleiferi* .. 130
Table 3F. Vancomycin Agar Screen for *Staphylococcus aureus* and *Enterococcus* spp. .. 134
Table 3G. Test for Detection of Inducible Clindamycin Resistance in *Staphylococcus* spp., *Streptococcus pneumoniae*, and *Streptococcus* spp. β-Hemolytic Group .. 136
Table 3H. Test for Detection of High-Level Mupirocin Resistance in *Staphylococcus aureus* ... 140
Table 3I. Test for Detection of High-Level Aminoglycoside Resistance in *Enterococcus* spp. (Includes Disk Diffusion) 142
Table 4A-1. Disk Diffusion QC Ranges for Nonfastidious Organisms and Antimicrobial Agents Excluding β-Lactam Combination Agents 144
Table 4A-2. Disk Diffusion QC Ranges for Nonfastidious Organisms and β-Lactam Combination Agents .. 148
Table 4B. Disk Diffusion QC Ranges for Fastidious Organisms ... 150
Table 4C. Disk Diffusion: Reference Guide to QC Frequency .. 154
Table 4D. Disk Diffusion: Troubleshooting Guide .. 156
Table 5A-1. MIC QC Ranges for Nonfastidious Organisms and Antimicrobial Agents Excluding β-Lactam Combination Agents 160
Table 5A-2. MIC QC Ranges for Nonfastidious Organisms and β-Lactam Combination Agents .. 166
Table 5B. MIC QC Ranges for Fastidious Organisms (Broth Dilution Methods) .. 170
Table 5C. MIC QC Ranges for *Neisseria gonorrhoeae* (Agar Dilution Method) ... 174
Table 5D. MIC QC Ranges for Anaerobes (Agar Dilution Method) .. 176
Table 5E. MIC QC Ranges for Anaerobes (Broth Microdilution Method) ... 178
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F</td>
<td>MIC Reference Guide to QC Frequency</td>
<td>180</td>
</tr>
<tr>
<td>5G</td>
<td>MIC: Troubleshooting Guide</td>
<td>182</td>
</tr>
<tr>
<td>6A</td>
<td>Solvents and Diluents for Preparation of Stock Solutions of Antimicrobial Agents</td>
<td>186</td>
</tr>
<tr>
<td>6B</td>
<td>Preparation of Stock Solutions for Antimicrobial Agents Provided With Activity Expressed as Units</td>
<td>192</td>
</tr>
<tr>
<td>6C</td>
<td>Preparing Solutions and Media Containing Combinations of Antimicrobial Agents</td>
<td>194</td>
</tr>
<tr>
<td>7</td>
<td>Preparing Dilutions of Antimicrobial Agents to Be Used in Agar Dilution Susceptibility Tests</td>
<td>198</td>
</tr>
<tr>
<td>8A</td>
<td>Preparing Dilutions of Antimicrobial Agents to Be Used in Broth Dilution Susceptibility Tests</td>
<td>200</td>
</tr>
<tr>
<td>8B</td>
<td>Preparing Dilutions of Water-Insoluble Antimicrobial Agents to Be Used in Broth Dilution Susceptibility Tests</td>
<td>202</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>A</td>
<td>Suggestions for Confirming Resistant, Intermediate, or Nonsusceptible Antimicrobial Susceptibility Test Results and Organism Identification</td>
<td>204</td>
</tr>
<tr>
<td>B</td>
<td>Intrinsic Resistance</td>
<td>210</td>
</tr>
<tr>
<td>C</td>
<td>QC Strains for Antimicrobial Susceptibility Tests</td>
<td>216</td>
</tr>
<tr>
<td>D</td>
<td>Cumulative Antimicrobial Susceptibility Report for Anaerobic Organisms</td>
<td>222</td>
</tr>
<tr>
<td>E</td>
<td>Dosage Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Breakpoints</td>
<td>228</td>
</tr>
<tr>
<td>F</td>
<td>Cefepime Breakpoint Change for Enterobacteriaceae and Introduction of the Susceptible-Dose Dependent Interpretive Category</td>
<td>232</td>
</tr>
<tr>
<td>G</td>
<td>Epidemiological Cutoff Values</td>
<td>236</td>
</tr>
<tr>
<td>I (Part 1)</td>
<td>β-Lactams: Class and Subclass Designations and Generic Name</td>
<td>242</td>
</tr>
</tbody>
</table>
Contents (Continued)

Glossary I (Part 2). Non–β-Lactams: Class and Subclass Designations and Generic Name .. 244

Glossary II. Antimicrobial Agent Abbreviation(s), Route(s) of Administration, and Drug Class ... 248

Glossary III. List of Identical Abbreviations Used for More Than One Antimicrobial Agent in US Diagnostic Products ... 254

The Quality Management System Approach .. 256

Related CLSI Reference Materials .. 257
Instructions for Use of Tables

These instructions apply to:

- **Tables 1A and 1B**: suggested groupings of antimicrobial agents that should be considered for testing and reporting by microbiology laboratories. These guidelines are based on antimicrobial agents approved by the US Food and Drug Administration (FDA) for clinical use in the United States. In other countries, placement of antimicrobial agents in Tables 1A and 1B should be based on available drugs approved for clinical use by relevant regulatory organizations.

- **Tables 2A through 2I**: tables for each organism group that contain:
 - Recommended testing conditions
 - Routine QC recommendations (also see Chapter 4 in M02 and M07)
 - General comments for testing the organism group and specific comments for testing particular agent/organism combinations
 - Suggested agents that should be considered for routine testing and reporting by medical microbiology laboratories, as specified in Tables 1A and 1B (test/report groups A, B, C, U)
 - Additional drugs that have an approved indication for the respective organism group but would generally not warrant routine testing by a medical microbiology laboratory in the United States (test/report group O for “other”; test/report group Inv. for “investigational” [not yet FDA approved])
 - Zone diameter and minimal inhibitory concentration (MIC) breakpoints

- **Tables 1C and 2J**: tables containing specific recommendations for testing and reporting results on anaerobes and some of the information listed in the bullets above

- **Tables 3A to 3I**: tables describing tests to detect particular resistance types in specific organisms or organism groups

I. Selecting Antimicrobial Agents for Testing and Reporting

A. Selecting the most appropriate antimicrobial agents to test and report is a decision best made by each laboratory in consultation with the *infectious diseases and pharmacy practitioners*, the pharmacy and therapeutics and infection control committees of the medical staff, and the antimicrobial stewardship team. The recommendations for each organism group include agents of proven efficacy that show acceptable *in vitro* test performance. Considerations in the assignment of agents to specific test/report groups include clinical efficacy, prevalence of resistance, minimizing emergence of resistance, cost, FDA clinical indications for use, and current consensus recommendations for first-choice and alternative drugs. Tests of selected agents may be useful for infection control purposes.
B. Drugs listed together in a single box are agents for which interpretive categories (susceptible, intermediate, or resistant) and clinical efficacy are similar. Within each box, an “or” between agents indicates agents for which cross-resistance and cross-susceptibility are nearly complete. Results from one agent connected by an “or” can be used to predict results for the other agent. For example, *Enterobacteriaceae* susceptible to cefotaxime can be considered susceptible to ceftriaxone. The results obtained from testing cefotaxime could be reported along with a comment that the isolate is also susceptible to ceftriaxone. For drugs connected with an “or,” combined major and very major errors are fewer than 3%, and minor errors are fewer than 10%, based on a large population of bacteria tested (see CLSI document M23⁴ for description of error types). In addition, to qualify for an “or,” at least 100 strains with resistance to the agents in question must be tested, and a result of “resistant” must be obtained with all agents for at least 95% of the strains. “Or” is also used for comparable agents when tested against organisms for which “susceptible-only” breakpoints are provided (e.g., cefotaxime or ceftriaxone with *H. influenzae*). When no “or” connects agents within a box, testing of one agent cannot be used to predict results for another, owing to discrepancies or insufficient data.

C. Test/Report Groups

1. As listed in Tables 1A, 1B, and 1C, agents in **group A** are considered appropriate for inclusion in a routine, primary testing panel, as well as for routine reporting of results for the specific organism groups.

2. **Group B** includes antimicrobial agents that may warrant primary testing, but they may be reported only selectively, such as when the organism is resistant to agents of the same antimicrobial class, as in group A. Other indications for reporting the result might include a selected specimen source (e.g., a third-generation cephalosporin for enteric bacilli from CSF or trimethoprim-sulfamethoxazole for urinary tract isolates); a polymicrobial infection; infections involving multiple sites; cases of patient allergy, intolerance, or failure to respond to an antimicrobial agent in group A; or for infection control purposes.

3. **Group C** includes alternative or supplemental antimicrobial agents that may necessitate testing in those institutions that harbor endemic or epidemic strains resistant to several of the primary drugs (especially in the same class, e.g., β-lactams); for treatment of patients allergic to primary drugs; for treatment of unusual organisms (e.g., chloramphenicol for extraintestinal isolates of *Salmonella* spp.); or for reporting to infection control as an epidemiological aid.

4. **Group U** (“urine”) includes certain antimicrobial agents (e.g., nitrofurantoin and certain quinolones) that are used only or primarily for treating UTIs. These agents should not be routinely reported against pathogens recovered from other infection sites. An exception to this rule is for *Enterobacteriaceae* in Table 1A, in which cefazolin is listed as a surrogate agent for oral cephalosporins. Other antimicrobial agents with broader indications may be included in group U for specific urinary pathogens (e.g., *Enterococcus* and ciprofloxacin).

5. **Group O** (“other”) includes antimicrobial agents that have a clinical indication for the organism group but are generally not candidates for routine testing and reporting in the United States.
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system (QMS) approach in the development of standards and guidelines that facilitates project management, defines a document structure using a template, and provides a process to identify needed documents. The QMS approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Customer Focus</th>
<th>Facilities and Safety</th>
<th>Personnel</th>
<th>Purchasing and Inventory</th>
<th>Equipment</th>
<th>Process Management</th>
<th>Documents and Records</th>
<th>Information Management</th>
<th>Nonconforming Event Management</th>
<th>Assessments</th>
<th>Continual Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

M100 covers the QSE indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section.

Path of Workflow

A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver their services, namely quality laboratory information.

M100 covers the medical laboratory path of workflow processes indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section.
Related CLSI Reference Materials

EP23 Laboratory Quality Control Based on Risk Management. 1st ed., 2011. This document provides guidance based on risk management for laboratories to develop quality control plans tailored to the particular combination of measuring system, laboratory setting, and clinical application of the test.

M02 Performance Standards for Antimicrobial Disk Susceptibility Tests. 13th ed., 2018. This standard covers the current recommended methods for disk susceptibility testing and criteria for quality control testing.

M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed., 2018. This standard covers reference methods for determining minimal inhibitory concentrations of aerobic bacteria by broth macrodilution, broth microdilution, and agar dilution.

M11 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 8th ed., 2012. This standard provides reference methods for the determination of minimal inhibitory concentrations of anaerobic bacteria by agar dilution and broth microdilution.

M23 Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters. 5th ed., 2018. This guideline discusses the necessary and recommended data for selecting appropriate breakpoints and quality control ranges for antimicrobial agents.

M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data. 4th ed., 2014. This document describes methods for recording and analysis of antimicrobial susceptibility test data, consisting of cumulative and ongoing summaries of susceptibility patterns of clinically significant microorganisms.

M45 Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed., 2016. This guideline informs clinical, public health, and research laboratories on susceptibility testing of infrequently isolated or fastidious bacteria that are not included in CLSI documents M02, M07, or M100. Antimicrobial agent selection, test interpretation, and quality control are addressed.

M52 Verification of Commercial Microbial Identification and Antimicrobial Susceptibility Testing Systems. 1st ed., 2015. This guideline includes recommendations for verification of commercial US Food and Drug Administration–cleared microbial identification and antimicrobial susceptibility testing systems by clinical laboratory professionals to fulfill regulatory or quality assurance requirements for the use of these systems for diagnostic testing.

M60 Performance Standards for Antifungal Susceptibility Testing of Yeasts. 1st ed., 2017. This document includes updated minimal inhibitory concentrations, zone diameter, and quality control tables for the Clinical and Laboratory Standards Institute antifungal susceptibility testing documents M27 and M44.

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.
Explore the Latest Offerings From CLSI!

As we continue to set the global standard for quality in laboratory testing, we are adding products and programs to bring even more value to our members and customers.

By becoming a CLSI member, your laboratory will join 1,600+ other influential organizations all working together to further CLSI’s efforts to improve health care outcomes. You can play an active role in raising global laboratory testing standards—in your laboratory, and around the world.

Find out which membership option is best for you at www.clsi.org/membership.

Find what your laboratory needs to succeed! CLSI U provides convenient, cost-effective continuing education and training resources to help you advance your professional development. We have a variety of easy-to-use, online educational resources that make eLearning stress-free and convenient for you and your staff.

See our current educational offerings at www.clsi.org/education.

When laboratory testing quality is critical, standards are needed and there is no time to waste. eCLIPSE™ Ultimate Access, our cloud-based online portal of the complete library of CLSI standards, makes it easy to quickly find the CLSI resources you need.

Learn more and purchase eCLIPSE at clsi.org/eCLIPSE.

For more information, visit www.clsi.org today.