This guideline provides an overview of drug testing by medical laboratories, including testing for drugs of abuse. It discussed the preexamination, examination, and postexamination considerations for specimen collection, methods of analysis, and the reporting and interpretation of results.

A guideline for global application developed through the Clinical and Laboratory Standards Institute consensus process.
The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing medical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are managed according to the consensus process by a committee of experts.

Appeals Process

When it is believed that an objection has not been adequately considered and responded to, the process for appeals, documented in the CLSI Standards Development Policies and Processes, is followed.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For additional information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: +1.610.688.0100
F: +1.610.688.0700
www.clsi.org
standard@clsi.org
Toxicology and Drug Testing in the Medical Laboratory

Patrick B. Kyle, PhD, DABCC
Dwain C. Fuller, F-ABFT, TC-NRCC
Uttam Garg, PhD, DABCC
Catherine A. Hammett-Stabler, PhD, DABCC, F-ABFT
Eva Hoess, PhD
Kamisha Johnson-Davis, PhD, DABCC, FACB
Bhushan M. Kapur, PhD, FACB, FCACB
Loralie J. Langman, PhD
Donald F. LeGatt, PhD, FCACB
David Loughmiller
Amadeo Pesce, PhD, DABCC
Wadid Sadek, PharmD, MS, PhD
Michael P. Smith, PhD, DABFT, FACB
Ian D. Watson, PhD, FRCPath, FACB
Carl E. Wolf, PhD, MS, F-ABFT
Alan Wu, PhD, DABCC
Yan Victoria Zhang, PhD

Abstract

Clinical and Laboratory Standards Institute guideline C52—Toxicology and Drug Testing in the Medical Laboratory helps medical laboratories develop procedures for analyzing drugs of abuse and other compounds. C52 provides guidance on clinical toxicology testing from the initial consultation through final result reporting and interpretation, and includes a variety of specimen types, analytical procedures, and instrumentation.

This guideline discusses the most common purposes for clinical toxicology testing, including the support of emergency medicine, obstetrics and gynecology, neonatology, pediatrics, psychiatry, pain management, and addiction medicine. The primary objective is to ensure high-quality standards are maintained throughout the entire testing process, from specimen collection, processing, and analysis, through results reporting and interpretation.

Contents

Abstract .. i
Committee Membership .. iii
Foreword .. vii
Chapter 1: Introduction ... 1
 1.1 Scope ... 1
 1.2 Background ... 1
 1.3 Standard Precautions ... 5
 1.4 Terminology .. 5
Chapter 2: Path of Workflow .. 9
Chapter 3: Preexamination Activities for Screening Testing .. 11
 3.1 Collecting and Transporting Specimens .. 11
 3.2 Receiving and Inspecting Specimens and Evaluating Test Requests 17
Chapter 4: Examination Activities for Screening Testing .. 19
 4.1 Assessing Specimen Quality, Validity, and Integrity ... 19
 4.2 Performing Initial Screening .. 19
 4.3 Typical Measurands .. 19
 4.4 Analytical Methods for Initial Screening ... 21
 4.5 Specimen and Quality Control Analysis .. 25
 4.6 Screening Results Review ... 25
 4.7 Cutoff Levels and Lower Limit of Detection ... 26
Chapter 5: Postexamination Activities for Screening Testing .. 29
 5.1 Reporting the Screening Results ... 29
 5.2 Result Interpretation .. 30
 5.3 Confirmation of Presumptive Positive Screening Results ... 30
Chapter 6: Definitive Testing .. 31
 6.1 Preexamination Activities for Definitive Testing ... 31
 6.2 Examination Activities for Definitive Testing ... 32
 6.3 Postexamination Activities for Definitive Testing .. 34
Chapter 7: Conclusion ... 38
Chapter 8: Supplemental Information ... 38
 References .. 39
 The Quality Management System Approach ... 44
 Related CLSI Reference Materials ... 45
For the purposes of this guideline, it is necessary to initially define “drug.” In the broadest sense, a drug is any chemical or compound administered to produce a physiological effect. From a legal perspective, “drug” often refers to substances for which the manufacture, possession, and use are regulated by government mandates, including drugs of abuse and prescription drugs. This guideline provides an overview of the analysis of scheduled drugs, nonprescription drugs, synthetic designer drugs, and other nonscheduled compounds. Substances medical laboratories do not typically analyze, such as solvents and anabolic steroids, are beyond this guideline’s scope.

This guideline discusses the detection and quantitation of drugs and compounds in biological specimens for medical purposes. Readers should be aware that clinical toxicology and drug testing results may be used in a court of law as part of the medical record and, inadvertently, become medico-legal results. However, formal forensic testing is also outside this guideline’s scope.

This guideline provides helpful information about preexamination, examination, and postexamination procedures for both screening and definitive testing that meet clinical needs. Each laboratory needs to determine medical staff’s and patients’ expectations and support the relevant extent of testing. Every laboratory cannot reasonably be expected to test for the same drugs or offer analyses for all drugs for which analytical procedures are available. In fact, laboratories should not offer drug tests simply because the measurement procedures are readily available. Laboratory directors need to determine the appropriate offering for drug testing.

Toxicology testing has traditionally been performed in medical laboratories, and this continues to be the case for most testing. However, many point-of-care testing devices, especially screening devices for drugs of abuse, are now available.¹²

Many sources provide information about how to conduct drug testing. After extracting general information from this guideline, users should consult more specific and detailed textbooks, peer-reviewed professional journal papers, websites, and other sources. Readers need to use discretion when adapting this guideline’s recommendations to suit specific purposes and circumstances.

Clinical drug testing is readily distinguished from forensic drug testing because clinical specimens are not collected using a documented chain of custody. Clinical toxicology specimens are collected and processed following the same procedures used for other clinical specimens. Many clinical toxicology measurement procedures are quantitative, but qualitative screening tests may also be used. The results of rapid screening tests may be clinically useful, but their results may not always be confirmed by more specific methods.

Forensic testing is not usually conducted in most medical laboratories or only takes place infrequently and under unusual circumstances. However, there is the potential for situations in which the distinction between clinical and forensic testing becomes blurred. For example, a pregnant woman who undergoes drug testing as a patient but who screens positive for a drug of abuse could be referred to the authorities for prosecution for use or endangering the fetus. Testing of emergency room patients for ethanol may have forensic implications, eg, in the case of a motor vehicle accident with fatalities. It may not be possible for a laboratory to foresee all potential scenarios that can arise, and it may not have a standard operating procedure that covers all eventualities.

Guidelines for conducting drug testing in medical laboratories are presented using any number of organizational schemes. The approach in this guideline follows laboratory preexamination, examination, and postexamination workflow processes for both screening and definitive toxicology testing. This approach is consistent with other guidance documents that seek to ensure the entire laboratory testing process’s quality, from the time a test is ordered until a result is reported.
Clinical and analytical toxicology are rapidly changing sciences. Although efforts have been made to include the most common issues, not all measurands, instruments, or scenarios could be included in this guideline. Therefore, these recommendations may not be applicable to all circumstances, analytical methods, or scenarios.

Overview of Changes

This guideline replaces the previous edition of the approved guideline, C52-A2, published in 2007. Several changes were made in this edition, including:

- Focusing the guideline exclusively on clinical toxicology testing (in contrast to previous editions of C52, which focused extensively on clinical and forensic testing for drugs of abuse)
- Removing forensic testing, to avoid redundancy with forensic testing recommendations published by forensic organizations

NOTE: The content of this guideline is supported by the CLSI consensus process, and does not necessarily reflect the views of any single individual or organization.

Key Words

Abused drugs, clinical toxicology, controlled substances, drug abuse, drug screen, drug testing, drugs, drugs of abuse, emergency toxicology, ethanol, forensic toxicology, intoxication, overdose, serum drug testing, substance abuse, therapeutic drugs, toxicology, urine drug testing
Toxicology and Drug Testing in the Medical Laboratory

Chapter 1: Introduction

This chapter includes:

- Guideline’s scope and applicable exclusions
- Background information pertinent to the guideline’s content
- Standard precautions information
- “Note on Terminology” that highlights particular use and/or variation in use of terms and/or definitions
- Terms and definitions used in the guideline
- Abbreviations and acronyms used in the guideline

1.1 Scope

This guideline provides laboratories with basic and general toxicology testing information for medical purposes. The guideline discusses the most common specimen types used for toxicology testing, which include urine, serum, plasma, blood, oral fluid, hair, meconium, sweat, and breath. Other matrices that can be used for toxicology testing include, but are not limited to, gastric contents, umbilical cord and cord blood, amniotic fluid, breast milk, nails, dried blood spots, and placental tissue. However, these other matrices are not discussed in this guideline.

The measurands considered in this guideline include drugs of abuse, therapeutic drugs, over-the-counter (OTC) medications, ethanol, and miscellaneous substances. Test methodologies include rapid screening measurement procedures designed to produce only positive or negative results (qualitative tests), routine semiquantitative and quantitative tests, and more complex definitive measurement procedures.

C52 also provides useful guidance when performing drug testing for measurands other than those specifically included and for purposes and situations not covered.

This guideline is primarily applicable to drug testing performed in medical laboratories. The information is likely applicable for drug testing performed in physician office laboratories, clinics, satellite laboratories, and other facilities, but may be less applicable in other testing venues, such as large specialized reference laboratories, dedicated forensic laboratories, and the various sites in which point-of-care “field testing” may occur.

1.2 Background

1.2.1 Purposes of Clinical Toxicology Testing

Clinical toxicology testing is performed for medical reasons. The specimens are collected from patients to diagnose, monitor, and treat pathological conditions. Clinical toxicology testing often involves the following situations:
In cases for which immunoassay screening is part of the analytical process, confirmation testing for drugs of abuse is highly desirable. Whether to confirm or not confirm a particular drug or drug class is a decision each laboratory and requesting health care provider makes. Some laboratories have opted to use definitive testing in lieu of immunoassay screening.

Purposes for drug testing and the implications of qualitative and quantitative drug testing are discussed in the scenarios that follow. The terms “qualitative” and “quantitative” are not intended to be analogous to “screening” and “confirmation.” Qualitative testing may involve screening methods or definitive methods with qualitative results. Quantitative testing typically targets specific analytes, but may not provide definitive results.

Purpose 1: Detecting drugs, medications, and chemicals in the setting of toxic ingestion

Qualitative testing: Although clinicians are trained to recognize physiological features associated with specific drug classes, knowing which compounds are present can provide valuable information when treating the comatose, seizing, or obtunded patient. This is especially true during instances of polydrug overdoses, which often present with a variety of symptoms that do not fit a single toxidrome.

Conversely, qualitative testing in emergent situations is not recommended because:

- It does not confirm or rule out significant poisoning.
- It may not provide information that leads to a meaningful change in acute clinical management.
- Many drugs contribute to common clinical symptoms seen in an emergency department that are not detected by some methods (eg, immunoassay screening tests).
- Testing (immunoassays) may not be specific (ie, there are multiple false-positive results, which then need explanation and perhaps investigations).
- A positive result does not mean the detected drug is what is contributing to the patient’s symptoms.3-13

Quantitative testing: Some clinicians prefer quantitative over qualitative testing using serum, plasma, or blood. Quantitative drug levels offer valuable information to the clinician treating the acutely toxic patient. This is especially true during instances of polydrug overdose in which a variety of symptoms may confuse the clinician. However, developing quantitative measurement procedures for the thousands of available drugs, medications, and compounds is not practical or realistic. Toxicologists should work closely with clinicians to determine which compounds are the most appropriate candidates for quantitative measurement procedures. It should be noted that quantitative analysis in urine is of questionable clinical value due to variable urine output.

Purpose 2: Ensuring medication compliance

Qualitative testing: Studies have shown that patients tested for their respective drugs by any method are more likely to be compliant than those not tested.14 Qualitative drug testing serves this purpose and provides clinicians with immediate results to use during the office visit. For example, when a patient’s drug test
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system (QMS) approach in the development of standards and guidelines, which facilitates project management; defines a document structure using a template; and provides a process to identify needed documents. The QMS approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (i.e., operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are as follows:

- Organization
- Customer Focus
- Personnel
- Facilities and Safety
- Purchasing and Inventory
- Equipment
- Process Management
- Documents and Records
- Information Management
- Nonconforming Event Management
- Assessments
- Continual Improvement

C52 covers the QSEs indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section.

Path of Workflow

A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information.

C52 covers the medical laboratory path of workflow processes indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section.
Related CLSI Reference Materials*

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Edition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C24</td>
<td>Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions</td>
<td>4th ed., 2016</td>
<td>This guideline provides definitions, principles, and approaches to laboratory quality control design, implementation, and assessment.</td>
</tr>
<tr>
<td>C43</td>
<td>Gas Chromatography/Mass Spectrometry Confirmation of Drugs</td>
<td>2nd ed., 2010</td>
<td>This document provides guidance on establishing uniform practices necessary to produce quality data for quantitation and identification of a drug or drug metabolite using the gas chromatography/mass spectrometry method. Specific quality assurance criteria for maintaining and documenting optimal instrument performance are also presented.</td>
</tr>
<tr>
<td>C62</td>
<td>Liquid Chromatography-Mass Spectrometry Methods</td>
<td>1st ed., 2014</td>
<td>This document provides guidance to the clinical laboratorian for the reduction of interlaboratory variance and the evaluation of interferences, assay performance, and other pertinent characteristics of clinical assays. This guideline emphasizes particular areas related to assay development and presents a standardized approach for method verification that is specific to mass spectrometry technology.</td>
</tr>
<tr>
<td>EP12</td>
<td>User Protocol for Evaluation of Qualitative Test Performance</td>
<td>2nd ed., 2008</td>
<td>This document provides a consistent approach for protocol design and data analysis when evaluating qualitative diagnostic tests. Guidance is provided for both precision and method-comparison studies.</td>
</tr>
<tr>
<td>EP19</td>
<td>A Framework for Using CLSI Documents to Evaluate Clinical Laboratory Measurement Procedures</td>
<td>2nd ed., 2015</td>
<td>This report uses the “measurement procedure lifecycle” framework to aid users of CLSI evaluation protocols documents during establishment and implementation of measurement procedures developed by both commercial manufacturers and clinical laboratories, ie, for laboratory-developed tests.</td>
</tr>
<tr>
<td>M29</td>
<td>Protection of Laboratory Workers From Occupationally Acquired Infections</td>
<td>4th ed., 2014</td>
<td>Based on US regulations, this document provides guidance on the risk of transmission of infectious agents by aerosols, droplets, blood, and body substances in a laboratory setting; specific precautions for preventing the laboratory transmission of microbial infection from laboratory instruments and materials; and recommendations for the management of exposure to infectious agents.</td>
</tr>
</tbody>
</table>

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.
Explore the Latest Offerings From CLSI!

As we continue to set the global standard for quality in laboratory testing, we are adding products and programs to bring even more value to our members and customers.

By becoming a CLSI member, your laboratory will join 1,600+ other influential organizations all working together to further CLSI’s efforts to improve health care outcomes. You can play an active role in raising global laboratory testing standards—in your laboratory, and around the world.

Find out which membership option is best for you at www.clsi.org/membership.

Find what your laboratory needs to succeed! CLSI U provides convenient, cost-effective continuing education and training resources to help you advance your professional development. We have a variety of easy-to-use, online educational resources that make eLearning stress-free and convenient for you and your staff.

See our current educational offerings at www.clsi.org/education.

When laboratory testing quality is critical, standards are needed and there is no time to waste. eCLIPSE™ Ultimate Access, our cloud-based online portal of the complete library of CLSI standards, makes it easy to quickly find the CLSI resources you need.

Learn more and purchase eCLIPSE at clsi.org/eCLIPSE.

For more information, visit www.clsi.org today.